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The microscopic mechanism of relaxation: 
fluctuating local magnetic fields

• Relaxation is caused by locally fluctuating magnetic fields 

• These can have multiple origins – dipole-dipole interactions, 
chemical shift anisotropy, paramagnetism, chemical exchange… 

• Effect on spin relaxation depends on timescale (frequency) of 
fluctuations 

• Pulses – weak magnetic fields oscillating on-resonance at the 
Larmor frequency – cause transitions between energy levels. In an 
identical way, random fluctuations in local fields at the Larmor 
frequency cause longitudinal and transverse relaxation. 

• Transverse relaxation is additionally caused by fluctuations at any 
frequency

Sources of fluctuating local fields
• Dipole-dipole (DD): Bloc ∝ γH/r3 ≈ 2.4 mT (150 ppm) 

independent of B0 

• Chemical shift anisotropy (CSA): Bloc ∝ B0· Δσ (170 ppm)  
proportional to B0 

• chemical exchange (Rex): Bloc ~ B0· ∆δ ~ 1 ppm  
proportional to B0 

• Paramagnetism, quadrupolar interactions (2H), scalar couplings… 

• All fluctuations are much weaker than the static field, B0 

• Sensitivity of spins to these local field fluctuations depends on their 
gyromagnetic ratio – 1H most sensitive, 15N least sensitive

local field is vector sum of lots of interactions, 
and depends strongly on orientation of molecule

Sources of fluctuating local fields



Quantifying fluctuations: 
Correlation functions and spectral densities

• The correlation function G(τ) describes how quickly fluctuations in 
the local field decay: 

• In simple cases this can be described by a single correlation time 
τc, which defines a rough ‘frequency’, 1/τc, where the fluctuations 
are strongest 

• This can be made more precise by the idea of the spectral density 
function J(ω), the Fourier transform of the correlation function:  
 
 

• Special case: J(0) is the integral of the correlation function
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• Isolated spin (e.g. 129Xe) with Larmor frequency ω0 

• Fluctuating local field Bloc 

• Fluctuations are isotropic: 

• Timescale of fluctuations described by correlation time 
τc and reduced spectral density function j(ω)

The random field model
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Longitudinal relaxation in the 
random field model

• Longitudinal relaxation changes the energy of the 
spin – a non-adiabatic process (non-secular, in 
Keeler’s terminology) 

• In direct analogy to rf pulses, only fluctuations at the 
Larmor frequency ω0 are important 

• Relaxation rate is proportional to the spectral density 
at this frequency, and the magnitude of the 
fluctuations:
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Non-adiabatic (non-secular) contributions to 
transverse relaxation in the random field model

• Fluctuations at the Larmor frequency  
cause spins to rotate – this changes 
the x or y magnetisation as well as 
the z magnetisation 

• Relaxation rate proportional to spectral density at 
this frequency, and the magnitude of the fluctuations:  

• Transverse relaxation rate only half as fast as 
longitudinal relaxation – only one of x and y 
magnetisations are affected
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Adiabatic (secular) transverse relaxation 
in the random field model

• Fluctuations in the local field – on any timescale – 
cause the Larmor frequency to fluctuate 

• Over an ensemble of many spins, this gradually 
results in coherences getting out of sync

Simulation of adiabatic (secular) transverse relaxation 
in the random field model
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Total transverse relaxation 
in the random field model

• Adiabatic contribution to transverse relaxation proportional 
to spectral density at zero frequency: 

• This is the total area under the correlation function 
– in other words, slowly decaying fluctuations cause the 
most transverse relaxation 

• Total transverse relaxation rate is the sum of adiabatic and 
non-adiabatic contributions: 

• Macromolecular limit (slow motion): Only j(0) term is 
significant
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Dipolar relaxation of two spins
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Dipolar coupling:

Longitudinal relaxation (from Soloman equations):

Transverse relaxation: secular
non-secular

where does this term come from?



Dipolar relaxation of two spins
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Dipolar coupling:

Longitudinal relaxation (from Soloman equations):

Transverse relaxation:
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Cross-relaxation (NOE):

Reduced spectral density mapping
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Functional 
dependence J(0) J(ωN) J(ωH±ωN)

R2 ✓ ✓ ✓
R1 ✗ ✓ ✓

NOE ✗ ✗ ✓

Combined measurement of R1, R2 and NOE can 
disentangle contributions of J(0), J(ωN) and J(ωH)

Approximate 
as equal

Deuteration

• Fluctuations in local field ~ γ2 

• γD/γH ≈ 0.15, and (γD/γH)2 ≈ 0.02 

• Deuteration can dramatically decrease 
transverse relaxation rates by eliminating 
unwanted relaxation pathways
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Dipolar coupling:

Transverse cross-relaxation

• Longitudinal cross-relaxation is an important 
effect, responsible for the NOE, arising from 
the dipolar interaction of spins:  

• Is there an analogous relaxation process 
between transverse spins? Yes!  

• Why don’t we normally see it?

�12 = b2
⇥

3
10j(!0,1 + !0,2)� 1

20j(!0,1 � !0,2)
⇤

⌘12 = b2
⇥

1
10j(0) +

3
20j(!0)

⇤



The secular approximation

• States with different eigenfrequencies do not 
cross-relax 

• e.g. z magnetisation has zero frequency, so all 
spins can cross-relax 

• Transverse magnetisation – coherences 
generally have different frequencies (different 
nuclei, different chemical shifts) and effects of 
cross-relaxation contributions rapidly cancel out 

• ‘Different’ in this context means ∆ω >> linewidth

Spin-locking and R1ρ relaxation
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Spin-locking and transverse 
cross-relaxation (ROESY)

• Provided ω1 >> ∆Ω, spins are locked along x axis 

• Now transverse cross-relaxation is coherent and can become significant 

• Rate still depends on γ1
2γ2

2 – much more important for 1H than 15N
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Effective field:

NOESY vs ROESY
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